A Semigroup Approach to an Integro-Differential Equation Modeling Slow Erosion

نویسندگان

  • Alberto Bressan
  • Wen Shen
چکیده

The paper is concerned with a scalar conservation law with nonlocal flux, providing a model for granular flow with slow erosion and deposition. While the solution u = u(t, x) can have jumps, the inverse function x = x(t, u) is always Lipschitz continuous; its derivative has bounded variation and satisfies a balance law with measure-valued sources. Using a backward Euler approximation scheme combined with a nonlinear projection operator, we construct a continuous semigroup whose trajectories are the unique entropy weak solutions to this balance law. Going back to the original variables, this yields the global well-posedness of the Cauchy problem for the granular flow model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lipschitz Semigroup for an Integro–differential Equation for Slow Erosion

In this paper we study an integro-differential equation describing granular flow dynamics with slow erosion. This nonlinear partial differential equation is a conservation law where the flux contains an integral term. Through a generalized wave front tracking algorithm, approximate solutions are constructed and shown to converge strongly to a Lipschitz semigroup.

متن کامل

Front Tracing Approximations for Slow Erosion

In this paper we study an integro-differential equation that arises in modeling slow erosion of granular flow. We construct piecewise constant approximate solutions, using a front tracing technique. Convergence of the approximate solutions is established through proper a priori estimates, which in turn gives global existence of BV solutions. Furthermore, continuous dependence on initial data an...

متن کامل

The Continuous Galerkin Method for an Integro-differential Equation Modeling Dynamic Fractional Order Viscoelasticity

We consider a fractional order integro-differential equation with a weakly singular convolution kernel. The equation with homogeneuos Dirichlet boundary conditions is reformulated as an abstract Cauchy problem, and well-posedness is verified in the context of linear semigroup theory. Then we formulate a continuous Galerkin method for the problem, and we prove stability estimates. These are then...

متن کامل

Modified Laplace decomposition method for fractional Volterra-Fredholm integro-differential equations

This paper successfully applies the Adomian decomposition  and the modified Laplace Adomian decomposition methods to find  the approximate solution of a nonlinear fractional Volterra-Fredholm integro-differential equation. The reliability of the methods and reduction in the size of the computational work give these methods a wider applicability. Also, the behavior of the solution can be formall...

متن کامل

Front Tracking Approximations for Slow Erosion

In this paper we study an integro-differential equation describing slow erosion, in a model of granular flow. In this equation the flux is non local and depends on x, t. We define approximate solutions by using a front tracking technique, adapted to this special equation. Convergence of the approximate solutions is established by means of suitable a priori estimates. In turn, these yield the gl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014