A Semigroup Approach to an Integro-Differential Equation Modeling Slow Erosion
نویسندگان
چکیده
The paper is concerned with a scalar conservation law with nonlocal flux, providing a model for granular flow with slow erosion and deposition. While the solution u = u(t, x) can have jumps, the inverse function x = x(t, u) is always Lipschitz continuous; its derivative has bounded variation and satisfies a balance law with measure-valued sources. Using a backward Euler approximation scheme combined with a nonlinear projection operator, we construct a continuous semigroup whose trajectories are the unique entropy weak solutions to this balance law. Going back to the original variables, this yields the global well-posedness of the Cauchy problem for the granular flow model.
منابع مشابه
Lipschitz Semigroup for an Integro–differential Equation for Slow Erosion
In this paper we study an integro-differential equation describing granular flow dynamics with slow erosion. This nonlinear partial differential equation is a conservation law where the flux contains an integral term. Through a generalized wave front tracking algorithm, approximate solutions are constructed and shown to converge strongly to a Lipschitz semigroup.
متن کاملFront Tracing Approximations for Slow Erosion
In this paper we study an integro-differential equation that arises in modeling slow erosion of granular flow. We construct piecewise constant approximate solutions, using a front tracing technique. Convergence of the approximate solutions is established through proper a priori estimates, which in turn gives global existence of BV solutions. Furthermore, continuous dependence on initial data an...
متن کاملThe Continuous Galerkin Method for an Integro-differential Equation Modeling Dynamic Fractional Order Viscoelasticity
We consider a fractional order integro-differential equation with a weakly singular convolution kernel. The equation with homogeneuos Dirichlet boundary conditions is reformulated as an abstract Cauchy problem, and well-posedness is verified in the context of linear semigroup theory. Then we formulate a continuous Galerkin method for the problem, and we prove stability estimates. These are then...
متن کاملModified Laplace decomposition method for fractional Volterra-Fredholm integro-differential equations
This paper successfully applies the Adomian decomposition and the modified Laplace Adomian decomposition methods to find the approximate solution of a nonlinear fractional Volterra-Fredholm integro-differential equation. The reliability of the methods and reduction in the size of the computational work give these methods a wider applicability. Also, the behavior of the solution can be formall...
متن کاملFront Tracking Approximations for Slow Erosion
In this paper we study an integro-differential equation describing slow erosion, in a model of granular flow. In this equation the flux is non local and depends on x, t. We define approximate solutions by using a front tracking technique, adapted to this special equation. Convergence of the approximate solutions is established by means of suitable a priori estimates. In turn, these yield the gl...
متن کامل